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ABSTRACT

The propertles of a classical magnetic dipole are investigated. The
vector pctential A ls derived ab initio and from this the explicit form of the
magnet.c nducticn B 1s deduced. It is verified that this dipole magnetic
field 1s both solencidal (V. B = ¢) and irrotational (V x B = 0) so that
Maxwell's equations are satisfied for steady-state conditions. These
properties also lead to the existence of a scalar potential @ which is
expliclty derived.
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PROPERTIES OF A MAGNETIC DIPOLE

1. INTRODUCTION

Magnetic phenomena differ from electric phenomena since there are no
free magnetic charges cr poles. The basic entity 1in magnetic phenomena is
thus the magnetic Jdipsie - the magnetic ar.alogue of the electric dipole
censisting 2f Twe tctoosite charges placed very close together.

3ulk majznetic phencmena such as magnetizatlion are generally
described in terms cf£ accumulations of magnetic dipoles. However standard
works on electrcmagnetism {for example refs. [1-3]) usually describe only the
simple features cf the dipole without verifying all its properties. This
note explores the ghysical and mathematical properties of the classical
magnetic dipole. These properties enable the dipcle to be considered as one
of the fundamental magnetostatic units.

2. THE VECTOR POTENTIAL A

The magnetic dipole can be described by an infinitesimally small
current loop such as shown in Fig. 1. To calculate the magnetic induction B
due to this current loop it is customary to first calculate the vector
potential A defined so that

B = 9 XA (1)

The loop of radius a 1s oriented in th2 X-y plane with its centre
at the origin of the rectangular cartesian coordinate system and the vecter
potential i1s to be determined at a point P. For convenience a spherical
polar coordinate system is also used with its origin coincident with the
cartesian coordinate system (the point O in Fig.1). The following derivation
of A is similar to that given in standard texts [1-2] but is included here for
completeness. Due to the freedom of gauge transformations for the vector




potential, V.A can be defined as zero (the so-called Coulomb gauge
condition). In this case the vector potential A at point P is given by tre
volume integral

A = 4 /ax Jir )/ (- 1) dv-’ (2)
(o]

where J 1s the current density, r is the radial vector defining the point P
and r' is the vector defining the points on the current loop over which the
integration is to be carried out. The current density J has a component only
in the ¢-direction

J¢ = TIél{cose’')s(r'-al/a (3)
and hence so has the vector potential. With no loss of generality and to
simplify the calculations the point P 1s chosen so that ¢ = 0. Then only the
rectangular component Jy = J¢ is retained. Now A is given by

A¢(r,0) = ,OI/Axa I r? dr'd@cose¢ ' sl{cose‘)al{r'-al)/({lr-r' 1) (4)
where dQ' = sine’'de‘de’. The integration is simplified by the two delta
functions: the current density has non-zero value only on the loop where
cose’ = 0 and r’ = a. When the integration 1s carried out over the two del:ta

functions the vector potential reduces to

2 cose¢’'de’

2 ) 1/2
(a® + r” - 2arcose¢’'sine)

For points P where r>>a the denominator may be expanded in a Taylor
series as:

Ir—r'l_1 = 1/r (1 + (a/r)sinecoseé’ + O(az/rz) + ] (6)

If this expression is substituted into eguation (5) and terms of
second order and higher in (a/r) neglected, then the vector potential is given
by

x _Ta
Aflr,e) = 2 sz cose¢’'[1+ (a/r)sinecose’ 1de¢-’ (1)
¢ 4nr 0
Ia2
Iy
0 2
- — J " sinecos’e'de’, (8)
2 o]
4xr




= —_— s1lne,
2

ve)

2 2
s.nce Ii'cos 6'de’ = x and Jo* cos¢’'de’ = 0.

Defining the dipole moment m to be a vector of magnitude

2
{xa”)I normal to the plane of the current loop, Aé(r,o) can be written as
I3
0 : 2
A {r,0) = — msine/r )
-3 4ix

Hence the ector potential A can be expressed as a VvecLor cross

product

A = “O/-’hrm)( r/r3, C1)

since its only non-zero component {in the ¢-direction) is orthogonal to both
the directions of m and r and 1ts magnitude is given by x /4« 'milr/r31
“imes the sine of the angle 8 between these two vectors.

Alterrnatively A can be expressed as:
A = -4 /axmx 9(1l/r) (12)
o

since 9(1/r) = = —r/r3 for r > 0.

If thls expression for A 1s correct then 1t should satisfy the
Coulcmb gauge condition assumed in its derivation. This follcws readily since

VA = ok /4x 9oimx r/r3) (13}

= ,0/41 ({v x m) . /3 + m (9 x :/rz)] =0 {12)

because ¥ Xx m vanishes as m is constant and the curl of the gradlient of any
function vanishes 1identically (since e/ = - w1/,




3. CCOMPONENTS OF MAGNETIC INDUCTION B

The magnetic induction B due to a magnetic dipole located at the
ori1gin can bte derived from the relationship

w
It

<
x
>

o

If the result obtained in section 2 for the vector potential A 1s
substituted, the magnetic induction at a point r away from the current ssurce
is given by:

B = “O/4x v x (mx r/c3)
which can be expanded to
3 3 3 3 (o
B = uo/4r ({(r/r”>.vim - (v.m)r/r” + m{(v.r/c”) - (m.V)r/c"] (7))

The first two terms are identically zero since m ls constant. The third term
.s also zero since for any integer n and for r > 0 (4]

7.0:7) = P(ae3) Vg
Trhus the only remaining term 1s
3

B = - ,.0/41 {m.v)r/r (13

This expression can be simplified by considering the vector

(- 9)y v = (0 VgV + ylUo-v)V (20)

V are arbitrary differentiable vector functions and ¢ 1s an
£ferentiable scalar function. Eguation (19) then becomes

FS
-
[}

e

= E;g (-3(m- ) r/r2 + m/r3) (

L)
[ %)




.T
- -
because V(l/r3) = - 3r/r° and (m-V)r = m. Thus (22) can be written as
*o 5 3
B=—I(3(mplr/r> - m/r”) {23)

ix

In spherical polar coordinates with the origin situated atAthe location of the
dipole the components of B can be found from (23) by B, = r- B and By = 0-
where r and 0 are unit vectors in the radial and zenithal (8) directions
respectively (ref. to Fig. 1). There is no component in the

azimuthal (¢) direction since é- B = 0. The tWo non-zero components may be
readily obtained as:

B = no/4r [2mcose/r] (24)

[

B = /4x [msine/:c) (28)
o]

from the above discussion.

4. DIVERGENCE OF THE MAGNETIC INDUCTION

The expressicn (23) for B was derived from the curl of the vector
potential A. Hence B is automatically divergenceless since the divergence c¢f
the curl of any vector is zero [4]. However, 1t 1s of interest tc explicity
verify that the deduced expression for B is divergenceless. The divergence of
the magnetic induction due to a magnetic dipole is given by

"

7B = E% v (3(mc)r/r> - m/r3) (26)

The divergence of both terms inside the bracket can be calculated
from the vector identity (4]

V-(¢V) = Uyp.V + V-V (27}

where ¢ and V are defined as in section 3. Now the first term may be expanded
to

v.(m.r)r/r5 = m.r/r5 + (m.r)(v.r/rs) (28)
= —m.r/r5 (29)
5




S 5 .
since vim.r) = m and v.{r/r”) = -2/r” from equation (18). The divergence of
the second term in {26) reduces to

3 3
v.m/c?) = v/ .mo+ 1/ (vm) {35)
5
= -3m.r/r
5 ; L
since v(1/r3) = -3r/r” and m is a constant. Combining these results the

divergence of B becomes

®
0 5

v.B = T (—3m.r/r5 + 3m.r/r” {329
w

so that B is a sclenoidal vector field and thus obeys the fundamental law of
magnetostatics.

5. THE CURL OF THE MAGNETIC INDUCTION

rrom Maxwell's laws ¥ X B = g J assuming steady-state conditions.
HYence V x B = 0 in the region excluding the dipole source. Adapting the same
philcsophy as in section 4 this result is explicity verified for the specific
form of the dipole’s magnetic induction B. The curl of the magnetic
induction can be written as

M

Vv x B = Z% v x {(3(m.r) r/r5 - m/r3] (33)

The curl of both terms can be calculated from the vector identity

7 x (yV) = T¢ x V + §(V x V), (34)
where ¢ and V are as defined in section 3. The first term may be expanded as
5 5 5
39 x (m.p)r/r” = 30 vim.r) x r/r + (m.r) v x(r/r”)) (35)
5
= 3(mx r/r” ] (36)
6




.5 )
since vim.r) = mand V x {(r/r”) = 0 identically [(4]. The second term 10
equaticn (33) becomes

3 3
-7 x (m/r') = - (9(1/r7) xm + 1/r3(v X m)) {37}
5
=3 rxmr (38)
5 L
since V(1/r3) = -3r/r” for r > 0 and V x m = 0. Combining these results the
curl of B becomes
Fo 5 5
7 x B = e (3{m x ©)/r” + 3{r x m)/r") (39)
= 0

Hence the magnetic inducticn vector B 1s irrotational as required.

6. SCALAR POTENTIAL OF MAGNETIC DIPOLE

It has been shown that B is irrotational (i.e. ¥V x B = 0) for a
magnetic digole. Hence B can be written as the gradient of a scalar
fleld o.

B = - V¢ (40)

Since is also solenoidal {V-B = ¢) the scalar potential satisfies
the Laplacian, 7 ¢ = 0.

The scalar potential can be deduced from the alternative expression
£cr the vector potential A

A= - /4 mx v(1/r) (a1)
o}

Thus B = V x A can be expanded as

PO VRN ¥



I3
B=4—9 (m.9)9(1/r) - m.(9.9(1/5))] a2
x

“o
= — [(m.v)v(1/r)], {43)

ix

. 2,
since v {l/r) = 0 for r > 0.

Now using the vecter identity [4]

vim.v{1/r)) = (9{1/).¥im + (m.V)v{i/r) +7(1/r) x (v x m) +

mx{(v x 9(1/r)) (44
it can be seen that
vim.v{1l/2)) = (m.9)vll/z) t4s)
since the other terms o°n the right side vanish because m is constant and
7 x v{1/r) vanishes :entically [4]. Thus B can be expressed as
e
B = v ({m.v(1/r) 1) Y
ix
SO That tThe scalar pcIential e is given by
6 = - po/dr m.v(1/1) {47)

It can pbe readily shown that thils potential satisfies the Laplacian

since
2 , .
vV é& = ~-V.B =0 V481
7.  SUMMARY AND CONCLUSIONS
In this paper the magnetostatic properties ¢f a magnetic dipole have
ceen verif.led. In summary 1t has been shown that the magnetic dipole has a
vector petential which :s given by
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The magnetic wnducticn B was derived from the cur

o 5
B = ™ (3{m.)r/r” - m/r’ | {(52)

een explicitly verified that Maxwell's eguaticns hold
s¢ that

2. »
O
log

7 xXx B=0, {

w
Py

1o the reglion excluding the current source.

Further, it was shown that B can be expressed as th
scalar potential defined by
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FIGURE 1

A

The magnetic dipole represented as a circular current locp with
both its rectangular cartesian and spherical polar coordinate
systems.
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